\checkmark

STAMO

КАТАЛОГ РЕЗЬБОНАРЕЗНОГО ИНСТРУМЕНТА

- STAMO

КАТАЛОГ РЕЗЬБОНАРЕЗНОГО ИНСТРУМЕНТА

Частота вращения шпинделя, n

$n=V c \times 1000 / \pi \times D \quad$ Об/мин \quad| Vc - скорость резания (табличная величина) (м/мин) |
| :--- |
| D - номинальный диаметр резьбы (мм) |

Для выбора правильного значения крутящего момента на резьбовой вставке используйте формулу расчета:

$\mathrm{Md}=\mathrm{p}^{2} \times \mathrm{Dxkc} 8000 \quad \mathrm{H}^{*}$ М \quad| р- шаг резьбы (мм) |
| :--- |
| kc - удельное усилие резания ($\mathrm{H} /$ м 2) - табличная величина |

Так же для проверки необходимой мощности на шпинделе станка для нарезания резьбы используйте формулу:

$\mathrm{P}=\mathrm{Md} \times 2 \times \pi \times \mathrm{n} / 60 \mathrm{kBT}$

Скорости резания, указанные в таблице, являются начальными рекомендованными значениями и могут корректироваться в зависимости от условий обработки (системы СПИД, смазки и т.д.). Рекомендуется брать значение из середины интервала и оптимизировать его, делая акцент на производительность либо стойкость. Слишком маленькая скорость резания, равно как и слишком большая, ведет к износу и может стать причиной поломки инструмента. См. раздел 1.9 Возможные проблемы при нарезании резьбы и способы их решения стр. 6.

КЛАССИФИКАЦИЯ МАТЕРИАЛОВ

Область применения			Пример	твердость HB	Скорость резания, Vc		Удельная сила резания, Kc, $\mathrm{H} /$ mı 2	
			C покрытием		Без покрытия			
1. Сталь	1.1	Холоднокатанные, электротехнические		CT15, CT3	<120	15-45	5-25	2000
	1.2	Конструкционные	CT45	<200	15-45	5-25	2100	
	1.3	Углеродистые нелегированные	09「2C	<250	10-40	5-20	2200	
	1.4	Легированные, стальное литье	18ХГ, 20 Л	<250	10-40	5-20	2400	
	1.5	Легированная каленная, отпущенная	50X,30XMA	250-350	5-15	2-10	2500	
	1.6	Высоколегированные закаленные	30X3MФ	38-45 HRC	2-10*		2600	
	1.7	Высоколегированные закаленные		45-49 HRC	1-5*		2900	
	1.8	Высоколегированные закаленные		49-62 HRC	1-3*		3000	
2. Нержавеющая сталь	2.1	Ферритные	20X13, 40X13	<250	4-20	2-10	2300	
	2.2	Аустенитные	12X18H10T	<250	4-20	2-10	2600	
	2.3	Аустенитно-ферритные	08X22H6T	<320	4-20		3000	
	2.4	Аустенитно-ферритные жаропрочные		330-410	2-8		3100	
3. Чугуны	3.1	Серый чугун	C410, С415	<180	15-45	10-25	1600	
	3.2	Серый чугун	С430	180-300	10-40	10-20	1600	
	3.3	Высокопрочный чугун с шаровидным графитом	B440	<300	10-30	5-15	1700	
	3.4	Ковкий чугун	Kप35	250-500	10-20	3-10	1700	
	3.5	Серый вермикулярный	ЧВГ30	200-300	10-25		2000	
4. Легкие сплавы	4.1	Чистый алюминий/магний	АД1, AMr1	<100	15-35	10-20	700	
	4.2	Алюминиевые сплавы с содержанием $\mathrm{Si}<0,5 \%$	AMг5л	<150	15-40	10-20	700	
	4.3	Алюминиевые сплавы с содержанием $\mathrm{Si}<10 \%$	AK8	<150	15-40	10-20	800	
	4.4	Алюминиевые сплавы с содержанием Si>12 \%	AK17	<180	15-40		1000	
	4.5	Магниевые сплавы	MA5		20-55		600	
	4.6	Литейные сплавы магния	МЛ5, МЛ6	70-120	20-55		700	
	5.1	Чистая медь	M1, M2	<100	5-30		800	
	5.2	Медно-цинковые сплавы (латунь длинностружечная)	Л90	<200	15-35		1000	
	5.3	Медно-цинковые сплавы, бронза (латунь короткостружечная)	ЛС59, ЛА67	<200	5-25		1000	
	5.4	Высокопрочная бронза		<440	1-6		1000	
	6.1	Термопластики - углепластики (длинностружечные)	Полистирол		15-20*		400	
	6.2	Термореактивные			5-15*	2-10*	600	
	6.3	Армированные		240-440	3-10*		800	
	6.4	Графит технический	и1, и3		20-50*		600	
7 Специальные сплавы	7.1	Чистый титан	BT1	<200	2-10		2000	
	7.2	Титановые сплавы	BT6	<270	1-8		2000	
	7.3	Титановые сплавы	BT22	<410	1-5		2300	
	7.4	Чистый никель	НП2	<150	1-6		1300	
	7.5	Сплавы на основе Ni	ХН63МБ	<270	2-5		2000	
	7.6	Сплавы на основе Ni	хН73Мвтю	<470	2-5		2000	

[^0]
I Техническая информация

1.1 Как правильно выбрать метчик; 1.2 Типы резьбы; 1.3 Типы отверстий; 1.4 Типы заходной части; 1.5 Силы, действующие при резьбонарезании; 1.6 Точность резьбы; 1.7 Допуски на метрическую резьбу по стандарту ISO; 1.8 Использование СОЖ при резьбонарезании; 1.9 Возможные проблемы при нарезании резьбы метчиками и способы их устранения; 1.10 Материалы, используемые для изготовления метчиков; 1.11 Основные типы покрытий; 1.12 Термины

II Как пользоваться каталогом

2.1 Система обозначений метчиков STAMO; 2.2 Условные обозначения; 2.3 Специальные решения; 2.4 Условия поставки и упаковки; 2.5 Пример заказа;
2.6 Индивидуальный заказМетчики для метрической резьбы основного шага16
MF Метчики для метрической резьбы мелкого шагастр

GAS-Rp

Трубная цилиндрическая резьба (Витворта) DIN EN ISO 228
Трубная цилиндрическая резьба (Витворта) DIN EN 10226-1 и ISO 7-1

Унифицированная дюймовая резьба UN 60° крупный шаг ASME B1.15

UNC

91UNFУнифицированная дюймовая резьба UN60º мелкий шагстр
 100
UNEF-UNC-UN
Унифицированная дюймовая резьба UN60 ${ }^{\circ}$ экстра мелкий шагстр
Унифицированная дюймовая резьба
8-UN , 12-UN, $16-U N, 20-U N, 28-U N, 32-U N$ 109
NPSM-NPSF
Американский стандарт трубной цилиндрической резьбыcTp
ANSI B1.20.1, ANSI B1.20.3 115
Британский стандарт трубной конической резьбы
(Витворта) DIN EN 10226-2 и ISO 7-1 стрАмериканский стандарт трубной конической резьбы ANSI/ASME B1.20.1
Американский стандарт трубной цилиндрической резьбы ANSI B1.20.3Британский стандарт резьбы (Витворта) крупный шаг BS 84стр
BSW-PG-Tr-Rd
Резьба электротехнического назначения DIN 40430121
Круглая резьба DIN 405Метрическая резьба DIN 8140-2стр
EG M128
Раскатникистр130
Справочная информация стр
Таблица твердости материалов 138
Поиск артикула по странице ,Для использования проволочной вставки

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

1.1 КАК ПРАВИЛЬНО ВЫБРАТЬ МЕТЧИК

Уважаемые коллеги,
Ни для кого не секрет, что в машиностроении процесс нарезания резьбы играет ключевую роль, так
как выполняется в последнюю очередь на полностью готовом изделии.

Этот фактор чаще всего обязывает технолога подойти к выбору инструмента для нарезания резьбы крайне ответственно. Данное руководство поможет правильно сориентировать пользователя в огромном разнообразии видов метчиков и избежать наиболее часто повторяющихся ошибок при нарезании резьбы.

1.2 ТИПЫ РЕЗЬБЫ

В современном машиностроении используется большое количество видов резьбовых соединений. В данном каталоге представлены основные виды резьбы, используемые в машиностроении.
Ниже приведены основные типы резьбы, используемые в данном каталоге:

$\sqrt{v_{2}}$	ISO Метрическая резьба DIN 13	$\sqrt{4}$	Унифицированная дюймовая резьба UN-8 60° ASME B1.1 для специальных диаметров и шагов
$\sqrt{x^{2}+2} \text { MF }$	ISO Метрическая резьба, мелкий шаг DIN 13	$\sqrt{\frac{1}{2}} \text { BSW }$	Британский стандарт резьбы (Витворта), крупный шаг BS 84
UNC	Унифицированная дюймовая резьба UN 60°, крупный шаг ASME B1.1	$\sqrt{v_{2}}$ UNEF	Унифицированная дюймовая резьба UN 60°, экстра мелкий шаг ASME B1.1
$\sqrt{v_{1}}$	Унифицированная дюймовая резьба UN 60°, мелкий шаг ASME B1.1	$\sqrt{4}$ NPSM	Американская стандарт трубной цилиндрической резьбы ANSI B1.20.1 для механических соединений
$\sqrt{\sqrt{2}^{2}} \mathbf{G}$	Трубная цилиндрическая резьба (Витворта) DIN EN ISO 228	x^{x}	Резьба электротехнического назначения DIN 40430
$\sqrt{\frac{e v}{4}+4} \text { NPT }$	Американский стандарт трубной конической резьбы ANSI/ASME B1.20.1 для резьбы сиспользованием уплотнительного материала, конусность 1:16	$\sqrt{\text { 皆 }}$ NPTF	Американский стандарт трубной конической резьбы ANSI B1.20.3 для резьбы без использования уплотнительного материала, конусность 1:16
	Американский стандарт трубной цилиндрической резьбы ANSI B1.20.3 внутренняя трубная цилиндрическая резьба для топливных соединений (в т.ч. нефтяных, трубопроводных); комбинируется с наружной коническо трубной резьбой NPT или PTF-SAE-SHORT; контролируется коническими калибрами	$\sqrt{4} \mathrm{Rc}$ (BSPT)	Британский стандарт трубной конической резьбы (Витворта) DIN EN 10226-2 и ISO 7-1 для герметичных соединений, работающих под давлением и выполненных на резьбе; конусность 1:16
$\sqrt{\mathrm{H}^{2}} \mathrm{Rp}_{\text {(BSPP) }}$	Трубная цилиндрическая резьба (Витворта) DIN EN 10226-1 и ISO 7-1 для герметичных соединений,работающих под давлением и выполненных на резьбе		Метрическая трапецеидальная резьба, основной шаг DIN 103
	ISO Метрическая резьба DIN 8140-2 для использования проволочной резьбовой вставки	是	Круглая резьба Rd DIN 405

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

В основном отверстия подразделяются на два основных типа: глухие (без выхода из материала) и сквозные (с выходом из материала).

Примеры сквозных и глухих отверстий:

*не рекомендуется использование метчиков со спиральной канавкой

1.4 ТИПЫ ЗАХОДНОЙ ЧАСТИ

Для разных условий обработки применяются метчики с разной длиной заходной части:

1.5 СИЛЫ ДЕЙСТВУЮЩИЕ ПРИ РЕЗЬБОНАРЕЗАНИИ

Ниже приведены силы возникающие при резьбонарезании у метчика со спиральной канавкой (рис. A) и с прямой канавкой с подточкой (рис. Б):

Это необходимо учесть при использовании плавающих резьбонарезных патронов.
В случае использования метчиков с правой спиралью осевые силы направлены в сторону подачи, что компенсируется продольным растяжением патрона. Это может привести к увеличенному шагу резьбы. Поэтому значение подачи необходимо назначать приблизительно на 5\% меньше от расчетной $\mathrm{Vf}=\mathrm{n}^{*} \mathrm{p}$ (где n частота вращения, p -шаг резьбы)

В случае использования метчиков с левой спиралью или прямыми канавками осевые силы действуют против направления подачи, поэтому рекомендуется использовать расчетное значение подачи.

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

ТАБЛИЦА СООТВЕТСВИЯ ПОЛЕЙ ДОПУСКОВ ВНУТРЕННЕЙ И НАРУЖНОЙ РЕЗЬБЫ

Метчик			Внутренняя резь6а, гайка					Тип соединения
ISO	DIN	ANSI/ ASME						
ISO 1	4H	3B	4H	5H				С натягом
ISO 2	6H	2B	4G	5G	6H			По переходной посадке
ISO 3	6G	1B			6G	7H	8H	С зазором
	7G					7G	8G	Прослабленное под покрытие

КЛАССЫ ТОЧНОСТИ

Внутренняя резьба класс точности H

Допуски на метчики

Допуски на раскатники

Внутренняя резьба класс G

D2-средний диаметр, Au-основное отклонение

Для получения стандартного резьбового соединения с переходной посадкой необходимо использовать метчики с допуском ISO 2, 6H или 2B. Метчики с меньшим допуском по ISO 1 (4Н или 3B) позволяют получить соединение с натягом по среднему диаметру резьбы. Метчики с допуском по ISO 3 (6G, 1B) используются в гайках, на которые предполагается нанести покрытие.

Кроме метчиков с допусками 6H, 6G и 7G выпускаются метчики 6HX и 6GX. Буква "X" означает, что данный допуск не является стандартным. Такие метчики применяются в материалах для компенсации эластичной деформации материала. Поле допуска 6Н и 6НХ одно и то же. Используется такой вид допуска, как правило, в раскатниках.

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

1.7 ДОПУСКИ НА МЕТРИЧЕСКУЮ РЕЗЬБУ ПО СТАНДАРТУ ISO

-

Внутренняя резьба

Au	Основное отклонение
\mathbf{D}	Диаметр впадин внутренней резьбы
D1	Диаметр вершин внутренней резьбы
D2	Средний диаметр
\mathbf{H}	Высота исходного треугольника
\mathbf{P}	Шаг
Td1	Допуск D1
Td2	Допуск D2
\mathbf{a}	Угол профиля

Метчик

\mathbf{d}	Диаметр впадин внутренней резьбы (=D)
$\mathbf{d m i n}$	Диаметр впадин резьбы метчика
$\mathbf{d 2}$	Средний диаметр
$\mathbf{d 2 m a x}$	Максимальный средний диаметр
$\mathbf{d 2 m i n}$	Минимальный средний диаметр
$\mathbf{E 1}$	Нижнее отклонение d2
$\mathbf{E s}$	Верхнее отклонение d2
$\mathbf{E 1 d}$	Нижнее отклонение \mathbf{d}
\mathbf{P}	Шаг
\mathbf{R}	Радиус впадины метчика
$\mathbf{T d 2}$	Допуск на средний диаметр
$\mathbf{T a 2}$	Допуск половины угла профиля
\mathbf{a}	Угол профиля
$\mathbf{d} \mathbf{2}$	Половина угла профиля

Внутренняя резьба

Метчик

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

СОЖ или смазочно-охлаждающая жидкость используется для повышения стойкости инструмента и улучшения качества получаемой резьбы.

ОСНОВНЫЕ ТИПЫ СОж

Эмульсия

Наиболее широко используемый в промышленности тип СОЖ, используется на всех современных станках с ЧПУ

Паста

Данный тип СОЖ используется для нарезания резьб больших размеров и для нарезания резьбы раскатниками. Паста наносится в ручную.

Масло

Использование масел для нарезания резьбы позволяет получить высокое качество поверхности резьбы и максимально увеличить стойкость используемого инструмента.

ОСНОВНЫЕ РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ СОЖ

Основнье группы материалов		Нарезание резьбы метчиком	Раскатывание резьбы (бесстружечные метчики)
P	сталь сталь 850-1200 H/ mm^{2} сталь 1200-1400 Н/мм ${ }^{2}$	Эмульсия 5\% Эмульсия 5-10\% Эмульсия 10\% или масло	Эмульсия 5-10\% Эмульсия 10\% или масло Эмульсия 10% или масло
V	Нержавеющие стали	Эмульсия 5-10\% или масло	Эмульсия 5-10\% или масло
K	Серый чугун Чугун с шаровдным графитом (ВЧ)	Эмульсия 5\% Эмульсия 5\%	не обрабатывается Эмульсия 10\%
N	Алюминий, $\mathrm{Si} \leq 12 \%$ Алюминий, $\mathrm{Si} \geq 12 \%$ Магний Медь	Эмульсия 5-10\% Эмульсия 5-10\% Масло Эмульсия 5-10\%	Эмульсия 5-15\% Эмульсия 5-15\% обработка раскатниками практически не применяется Обработка раскатниками практически не применяется Эмульсия 5-10\%
S	Титановые сплавы Никелевые сплавы	Эмульсия 10\% или специальные масла Эмульсия 10\% или специальные масла	Специальные масла Специальные масла
H	Закаленая сталь ≥ 49 HRC	без СОЖ, при использовании тв.сплавного инструмента использовать специальные масла	не обрабатывается не применяются, т.к не получить точную резьбу
\bigcirc	Пластмассы	Эмульсия 5\%	

Категорически запрещается использование СОЖ при обработке закаленых материалов с твердостью ≥ 42 HRC! Обработка производится в сухую.
В противном случае использование СОЖ приведет к поломке инструмента.

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

1.9 ВОЗМОЖНЫЕ ПРОБЛЕМЫ ПРИ НАРЕЗАНИИ РЕЗЬБЫ МЕТЧИКАМИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Проблема	Причина	Способы устранения
Увеличенный размер резьбового отверстия (идет не проходной калибр)	Неправильное значение осевой подачи	Возникает, как правило, у спиральных метчиков. При обработке спиральными метчиками возникают силы в направлении подачи. Необходимо снизить подачу на 5-7\%
	Малая скорость резания	Используйте рекомендованные режимы резания
	Выбран неподходящий тип метчика	Выбрать метчик с меньшим углом спирали либо метчик с подточкой для прямых канавок
	Недостаточный подвод СОЖ	Обеспечить подвод СОЖ в зону резания для уменьшения наростообразования
	Ассиметричность метчика и отверстия	Убедиться в соосности инструмента и отверстия
	Неправильный допуск	Допуск метчика и контрольного образца различны. Выбрать метчик с правильным допуском
Уменьшенный размер резьбового отверстия (проходной калибр не идет)	Выбран неподходящий тип метчика	Выбрать метчик с меньшим углом спирали либо метчик с подточкой для прямых канавок
	Диаметр под резьбу меньше рекомендованного	Увеличить диаметр отверстия до рекомендованного каталогом (см. рекомендации (如)
	Недостаточный подвод СОЖ	Обеспечить подвод СОЖ в зону резания для уменьшения наростообразования и вымывания стружки из зоны резания
	Неправильный допуск	Допуск метчика и контрольного образца различны. Выбрать метчик с правильным допуском
	В следствие пластической деформации обрабатываемый материал сужается	Выбрать метчик, следуя рекомендациям каталога
Выкрашивание режущих кромок	Недостаточный подвод СОЖ	Обеспечить подвод СОЖ в зону резания для уменьшения наростообразования
	Утыкание метчика в дно отверстия	Увеличить глубину отверстия (если возможно). Использовать метчик с более короткой заходной частью. Уменьшить глубину резьбы
	Заклинивание стружки при нарезании метчиками со спиральной канавкой на выходе из отверстия	Нарезать резьбу в отверстии без фаски. Заходную фаску делать после обработки резьбы
	Наклеп	Использовать метчик с износостойким покрытием. Увеличить СОЖ. Уменьшить скорость резания
	Малый диаметр отверстия под резьбу	Увеличить диаметр отверстия до рекомендованного

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

1.9 ВОЗМОЖНЫЕ ПРОБЛЕМЫ ПРИ НАРЕЗАНИИ РЕЗЬБЫ МЕТЧИКАМИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Проблема	Причина	Способы устранения
Поломка метчика	Сильный износ, приводящий к увеличению крутящего момента	Своевременно менять инструмент на новый (переточенный)
	Недостаточный подвод СОЖ	Обеспечить подвод СОЖ в зону резания для уменьшения наростообразования
	Утыкание метчика в дно отверстия	Увеличить глубину отверстия (если возможно). Использовать метчик с более короткой заходной частью. Уменьшить глубину резьбы. Использовать резьбонарезные патроны с компенсацией на сжатие/растяжение
	Малый диаметр отверстия под резьбу	Увеличить диаметр отверстия до рекомендованного
	Высокая скорость обработки	Оптимизировать скорость резания
Быстрый износ	Высокая скорость обработки	Уменьшить скорость резания
	Недостаточный подвод СОЖ	Обеспечить подвод СОЖ в зону резания для уменьшения наростообразования
Нарост на инструменте	Неправильный тип метчика	Использовать метчик с большим углом затыловки. Для мягких материалов использовать метчики с полированными канавками
	Маленькая скорость резания	Пользуйтесь рекомендованными режимами резания
	Недостаточный подвод СОЖ	Обеспечить подвод СОЖ в зону резания для уменьшения наростообразования
	Неправильный тип покрытия или его отсутствие	Для мягких материалов использовать метчики без покрытия (для АІ сплавов при содержании $\mathrm{Si}<12 \%$). Для нержавеющих и мягких сталей - тип покрытия V
Поверхность резьбы рваная	Высокая скорость резания	Оптимизировать скорость резания
	Нарост на режущей кромке	См. нарост на инструменте
	Плохое удаление стружки из зоны резания	Использовать метчик с соответствующей геометрией канавки

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

1.10 МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ИЗГОТОВЛЕНИЯ МЕТЧИКОВ

Компания НПО «СТАМО» использует только высококачественные материалы для изготовления резьбонарезного инструмента. Весь материал проходит 100% входной контроль качества.

В зависимости от необходимой задачи в основной материал добавляются такие вещества как:
Вольфрам, молибден: увеличивающие сопротивление к износу и повышающие термостойкость;
Кобальт: увеличение твердости и износостойкости при высоких температурах;
Ванадий: увеличение износостойкости;
Наши инженеры постоянно работают над улучшением параметров изготавливаемого инструмента, применяя новые технологии и материалы.

Материал метчика, раскатника	Описание
HSS	Стандартная высококачественная быстрорежущая сталь. Универсальное применение.
HSSE, HSSV3	Улучшенная быстрорежущая сталь, обладающая высокой износостойкостью и стабильностью режущей части
HSSP (HSSCO)	Кобальтосодержащая быстрорежущая сталь. Обладает высокой твердостью при высоких температурах.
HSS-E-PM PM1,PM3	Порошковая быстрорежущая сталь. Обладает плотной и однородной структурой. Имеет высокую теплостойкость и прочность режущей части.
MDI/HM	Твердый сплав. Высокая прочность и стойкость. Для работы по материалам имеющим высокую твердость 45-62 НRC

1.11 ОСНОВНЫЕ ТИПЫ ПОКРЫТИЙ

Возможно нанесение других типов покрытий по требованию Заказчика

Покрытие	Микротвердость HV 0,05	Коэффициент сопротивления	Максимальная рабочая температура	Описание
\mathbf{V}	400	-	-	Обработка перегретым паром. Покрытие обеспечивает защитные антикоррозийные свойства. Оптимизирует отвод стружи.
TiN	2300	0,4	600	Нитрид титана. Позволяет достичь высокой твердости режущей кромки, сохраняя низкий коэффициент трения. Увеличивает стойкость инструмента и позоляет работать на более высоких скоростях резания, чем на инструменте без покрытия. Универсальное применение.
TICN	3000	0,4	400	Карбо нитрид титана. Используется для обработки абразивных материалов, никелевых и титановых сплавов.
ZrN	1600	-	-	Нитрид циркония. Покрытие обладает низким коэффициентом трения. В основном примененяется для алюминия и алюминиевых сплавов. Помогает избежать "налипания" материала на инструмент.
VS	1600	0,15	380	Улучшенная обработка перегретым паром. В основном используется на универсальных метчиках.
NS	2300	0,15	600	Азотирование. Основное применение данного покрытия обработка материалов с мелкой стружкой (например серый чугун).
K	2300	0,15	600	Tin-X Plus. Новое покрытие для материалов со среднем и низким коэффициентом сопротивления.
TXC	3500	0,15	850	Комбинированное покрытие (Tinalox+Carbon). Используется для глубоких отверстий. Хорошо подходит для обработки нержавеющих сталей.

I ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

1.12 ТЕРМИНЫ

- P

L1	Общая длина, мм
$\mathbf{L 2}$	Длина калибрующей части, мм
$\mathbf{L 4}$	Длина заходной части, мм
$\mathbf{L 3}$	Рабочая длина, мм
\mathbf{L}	Длина квадрата хвостовика, мм
\mathbf{P}	Шаг
\mathbf{S}	Длина канавок, мм
$\mathbf{d 1}$	Номинальный диаметр, мм
$\mathbf{d 2}$	Диаметр хвостовика, мм
$\mathbf{d} \mathbf{4}$	Диаметр шейки, мм
$\mathbf{d 3}$	Диаметр заходной части, мм
$\mathbf{d m}$	Средний диаметр, мм

di	Внутренний диаметр, мм
d5	Диаметр сердцевины, мм
T	Ширина спинки зуба, мм
a	Угол профиля резьбы, ${ }^{\circ}$
Y1	Передний угол, ${ }^{\circ}$
\boldsymbol{Y}	Передний угол спирали, ${ }^{\circ}$
$\boldsymbol{\beta}$	Угол заборной части, ${ }^{\circ}$
ε	Угол наклона стружечной канавки, ${ }^{\circ}$
Δ	Угол затыловки, ${ }^{\circ}$
$\Delta 1$	Угол затыловки среднего диаметра, ${ }^{\circ}$
a	Квадрат
φ	Угол спиральной подточки, ${ }^{\circ}$

II КАК ПОЛЬЗОВАТЬСЯ КАТАЛОГОМ

2.1 СИСТЕМА ОБОЗНАЧЕНИЙ МЕТЧИКОВ SТАМО

[^1]
II КАК ПОЛЬЗОВАТЬСЯ КАТАЛОГОМ

2.2 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

	Правосторонний метчик (RH), Левосторонний метчик (LH)
	Угол профиля резьбы
	Содежание кобальта 8\%
$\underbrace{\text { MT }}_{\text {Back Tapered }}$	Back Tapered - геометрия с обратной трапецией, INOX Tapered - геометрия для нержавеющих сталей
A	Длины заходной части
	Типы отверстий: глухие (без выхода из материала), сквозные (с выходом из материала)
1,5xD, 2,5xD, 3xD	Максимально допустимая глубина нарезания резьбы (D диаметр метчика)
$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { DIN } & \text { DIN } \\ 352 & 371 & 376 & 2186 & 374 \\ \hline \end{array}$	Международные стандарты исполнения метчиков

Ød1, M	тип резьбы	$\mathrm{d}_{2,}$, 9 9, MM	диаметр хвостовика
P, MM	шаг резьбы	a, h12, mm	сечение
L_{1}, MM	общая длина	Z	кол-во зубьев
$L_{2^{\prime}}$ MM	длина режущей части	(1)	диаметр отверстия под резьбу, мм

II КАК ПОЛЬЗОВАТЬСЯ КАТАЛОГОМ

2.3 СПЕЦИАЛЬНЫЕ РЕШЕНИЯ

Технологические возможности компании позволяют разрабатывать, проектировать и изготовлять метчики по техническому заданию или чертежам Заказчика. Возможно изготовление метчиков с нестандартными параметрами.

По желанию Заказчика возможно нанесение различных типов покрытий (как на стандартные позиции из каталога, так и на любой другой изготовленный метчик/раскатник).

Диапазон размеров инструмента под заказ начинается от самой мелкой резьбы М1,2 и заканчивается резьбами особо крупного размера M160.

Условия поставки	
Заказ метчиков	Компания НПО «СТАМО» сделала оформление максимально удобным для Вас. Сделать заказ можно одним из следующих споообов: -опправив заявку или чертеж на электронный адрес info@stamo-tools.ru -связаться с нашими специалистами по тел. (812) 648-22-98 -отправить заявку по факсу используя бланк заказа из каталога. (812) 648-22-98
Сроки поставки	Срок поставки стандартных метчиков по каталогу составляет 2-4 недели (при от- сутствии товара на складе СПб)
Условия поставки	Мы осуществляем доставку заказов по территории России надежными и проверенными транспортными компаниями
Минимальный заказ	На стандартные позиции минимальный заказ от 1 шт
Склад	г. Санкт-Петербург

II КАК ПОЛЬЗОВАТЬСЯ КАТАЛОГОМ

Заказ инструмента осуществляется по артикулам из каталога.
Сделать заказ можно одним из следующих способов:

- связаться с нашими специалистами по тел. (812) 648-22-98

- отправить заявку или чертеж на электронный адрес info@stamo-tools.ru

Для того, чтобы Ваша заявка была обработана в кратчайшие сроки, в ней должна содержаться максимально полная информация:

1) Артикул по каталогу состоящий из двух букв ST и шестизначный код типа 111417
2) Необходимое кол-во
3) Реквизиты компании (если запрос отправляется впервые)

- Для заказа специальных метчиков используйте бланк заказа из каталога, который можете отправить на e-mail: info@stamo-tools.ru или по факсу (812) 648-22-98

ПРИМЕР ЗАКАЗА

Метчик STAMO M10 ST140005-20 um. Метчик STAMO M10 ST140017-2 $\mathbf{~ m m}$. Метчик STAMP M10 \{T140068-15 um.

II КАК ПОЛЬЗОВАТЬСЯ КАТАЛОГОМ

2.6 ИНДИВИДУАЛЬНЫЙ ЗАКАЗ

ФОРМА ТЕХНИЧЕСКОГО ЗАПРОСА		Контактное лицо:		
		Наименование организации:		
		Должность:		
		Телефон:		
		e-mail: @		
		Дата: / /20_г.		
1. PA3MEP РЕЗЬБЫ				
Øx шаг:				
Точность:	Направление резьбы: \square правое \square левое			
Дополнительное описание:			\qquad	
2. ОБРАБАТЫВАЕМАЯ ДЕТАЛЬ		Материал: Предел прочности H/Mм ${ }^{2}$:	Обозначение:	
		$\begin{array}{ll} \text { Твердость: } & \square \mathrm{HB} \\ & \square \mathrm{HRC} \end{array}$		
Тип стружки: \square короткая \square средняя \square длинная			Описание материала:	
Ø Отверстие:	Сквозное отверстие	Глухое отверстие	Глухое/сквозное	
Расположение отверстия: вертикальное \square горизонтальное				
Отверстие под резьбу:	\square После сверла \square Литьё	После фрезы Штампованное	После развертки Другой вариант	

3. ОБОРУДОВАНИЕ И СОЖ			
Технические данные оборудования Производитель станка:		$\begin{aligned} & \square \text { Масло } \\ & \square \text { Масляный туман } \end{aligned}$	$\begin{aligned} & \square \text { Эмульсия___\% } \\ & \square \text { В сухую } \end{aligned}$
Тип: Мощность на шпинделе:	кВт	Обеспечение: \square Система станка	\square Кистью
Режимы резания: Количество оборотов в минуту: Скорость резания Vc: Тип крепления инструмента:	мин ${ }^{-1}$ м/мин		

4. ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ, ЭСКИЗЫ

РАСКАТНИКИ

Основное отличие в нарезании резьбы раскатником от нарезания резьбы метчиками, состоит в том, что при использовании расктников стружка не образуется.

Раскатники не имеют канавок для отвода стружки, их поперечное сечение - правильный многоугольник. При накатывании резьбы раскатник подается в предварительно просверленное отверстие, материал заготовки при этом подвергается пластическому деформированию.

Применение раскатников рекомендуется для материалов с хорошей пластичностью, предел кратковременной прочности не должен превышать 1680 МПа, твердость не более 40 HRC.

ПРЕИМУЩЕСТВА РЕЗЬБОНАКАТЫВАНИЯ

Поверхность резьбы обладает более высокой контактной прочностью и износостойкостью благодаря пластическому деформированию материала при накатывании.

У Улучшается качество поверхности резьбы, что приводит к улучшению износостойкости.

Скорость резания увеличивается для обеспечения пластического деформирования материала, что приводит к значительному снижению основного времени.

Так как не образуется стружка, длина резьбы не ограничена. Не требуется также переработка стружки.

- Раскатники подходят как для сквозных, так и для глухих отверстий.
- Повышается качество резьбы.

Для эффективной работы раскатника требуется предварительно просверлить большее отверстие, чем для метчика, связано это с уменьшением сил резания, действующих на раскатник.

Раскатники могут использоваться при нарезании резьб в отверстиях с пазами или в пересекающихся отверстиях.

Глубина резьбы								$3 \times \mathrm{D}$					
Материал								HSSP	HSSP	HSSP	HSSP	HSSP	HSSP
Класс точности								6HX	6HX	6HX	6GX	6GX	6GX
Покрытие								(BR)	V	(TiN)	(BR)	V	(TiN)
Группа обрабатываемых материалов								1.11 .21 .3	1.11 .2	1.11 .21 .31 .4	1.11 .21 .3	1.11 .2	1.11 .21 .31 .4
								4.14 .2	4.14 .2	2.12 .22 .3	4.14 .2	4.14 .2	2.12 .22 .3
									5.15 .2	4.14 .24 .3		5.15 .2	4.14 .24 .3
										5.15 .2			5.15 .2
$\begin{gathered} \varnothing \mathrm{d} 1, \\ \mathbf{M} \end{gathered}$	$\begin{gathered} \mathrm{P} \\ \mathrm{TPI} \end{gathered}$	L_{1}	L_{2}	$\mathrm{d}_{2} \mathrm{~h} 9$	$\begin{gathered} \mathrm{a} \\ \mathrm{~h} 12 \end{gathered}$	Z	[1]	Артикулы					
DIN 371								ST	ST	ST	ST	ST	ST
2	0.4	45	9	2,8	2,1	-	1,82	910000	910009	910018	910042	910051	910060
2,5	0,45	50	9	2,8	2,1	-	2,30	910001	910010	910019	910043	910052	910061
3	0,5	56	10	3,5	2,7	-	2,80	910002	910011	910020	910044	910053	910062
3,5	0,6	56	11	4	3	-	3,25	910003	910012	910021	910045	910054	910063
4	0,7	63	13	4,5	3,4	-	3,70	910004	910013	910022	910046	910055	910064
5	0,8	70	13	6	4,9	-	4,65	910005	910014	910023	910047	910056	910065
6	1	80	16	6	4,9	-	5,55	910006	910015	910024	910048	910057	910066
8	1,25	90	18	8	6,2	-	7,40	910007	910016	910025	910049	910058	910067
10	1,5	100	20	10	8	-	9,30	910008	910017	910026	910050	910059	910068
DIN 376								ST	ST	ST	ST	ST	ST
12	1,75	110	25	9	7	-	11,20	910033	910036	910039	910075	910078	910081
14	2	110	28	11	9	-	13,10	910034	910037	910040	910076	910079	910082
16	2	110	28	12	9	-	15,10	910035	910038	910041	910077	910080	910083

Cистема обозначений
Ød1, M
тип резьбы
P $_{1}$
L_{2}
шаг резьбы, мм
d_{2}, оя
общая длина, мм
длина режущей части, мм
диаметр хвостовика, мм
сение, мм
кол-во зубьев

Глубина резьбы								$3 \times \mathrm{D}$					
Материал								HSSP	HSSP	HSSP	HSSP	HSSP	HSSP
Класс точности								6HX	6HX	6HX	6GX	6GX	6GX
Покрытие								(BR)	V	(TiN)	(BR)	V	(TiN)
Группа обрабатываемых материалов								1.11 .21 .3	1.11 .2	1.11 .21 .31 .4	1.11 .21 .3	1.11 .2	1.11 .21 .31 .4
								4.14 .2	4.14 .2	2.12 .22 .3	4.14 .2	4.14 .2	2.12 .22 .3
									5.15 .2	4.14 .24 .3		5.15 .2	4.14 .24 .3
										5.15 .2			5.15 .2
$\begin{gathered} \varnothing \mathrm{d} 1, \\ \mathbf{M} \end{gathered}$	$\begin{gathered} \mathrm{P} \\ \mathrm{TPI} \end{gathered}$	L_{1}	L_{2}	$\mathrm{d}_{2} \mathrm{~h} 9$	$\begin{gathered} \mathrm{a} \\ \mathrm{~h} 12 \\ \hline \end{gathered}$	Z	[1]	Артикулы					
DIN 371								ST	ST	ST	ST	ST	ST
3	0.5	56	10	3,5	2,7	2	2,80	910084	910091	910098	910120	910127	910134
3,5	0.6	56	11	4	3	2	3,25	910085	910092	910099	910121	910128	910135
4	0,7	63	13	4,5	3,4	4	3,70	910086	910093	910100	910122	910129	910136
5	0.8	70	13	6	4,9	5	4,65	910087	910094	910101	910123	910130	910137
6	1	80	16	6	4,9	5	5,55	910088	910095	910102	910124	910131	910138
8	1,25	90	18	8	6,2	5	7,40	910089	910096	910103	910125	910132	910139
10	1,5	100	20	10	8	5	9,30	910090	910097	910104	910126	910133	910140
DIN 376								ST	ST	ST	ST	ST	ST
12	1,75	110	25	9	7	5	11,20	910111	910114	910117	910147	910150	910153
14	2	110	28	11	9	6	13,10	910112	910115	910118	910148	910151	910154
16	2	110	28	12	9	6	15,1	910113	910116	910119	910149	910152	910155

универсал	-
Система обозначений	
$\emptyset \mathrm{d} 1, \mathrm{MF}$	тип резьбы
P	шаг резьбы, мм
L_{1}	общая длина, мм
L_{2}	длина режущей части, мм
$\mathrm{d}_{2}, \mathrm{~h} 9$	диаметр хвостовика, мм
a, h12	сечение, мм
Z	кол-во зубьев
$[10]$	диаметр отверстия под резьбу, мм

Глубина резьбы								$3 \times \mathrm{D}$	3xD	$3 \times \mathrm{D}$	$3 \times \mathrm{D}$	$3 \times \mathrm{D}$	3xD
Материал								HSSP	HSSP	HSSP	HSSP	HSSP	HSSP
Класс точности								6HX	6HX	6HX	6GX	6GX	6GX
Покрытие								(BR)	V	(TiN)	(BR)	V	(TiN)
Группа обрабатываемых материалов								1.11 .21 .3	1.11 .2	1.11 .21 .31 .4	1.11 .21 .3	1.11 .2	1.11 .21 .31 .4
								4.14 .2	4.14 .2	2.12 .22 .3	4.14 .2	4.14 .2	2.12 .22 .3
									5.15 .2	4.14 .24 .3		5.15 .2	4.14 .24 .3
										5.15 .2			5.15 .2
$\begin{aligned} & \varnothing d 1, \\ & \text { MF } \end{aligned}$	$\begin{gathered} \hline \mathrm{P} \\ \mathrm{TPI} \end{gathered}$	L_{1}	L_{2}	$\mathrm{d}_{2} \mathrm{~h} 9$	$\begin{gathered} \mathrm{a} \\ \mathrm{~h} 12 \\ \hline \end{gathered}$	Z	(1)	Артикулы					
DIN 371								ST	ST	ST	ST	ST	ST
4	0,5	63	13	4,5	3,4	-	3,80	911000	911007	911014	911048	911055	911062
5	0,5	70	13	6	4,9	-	4,80	911001	911008	911015	911049	911056	911063
6	0,75	80	16	6	4,9	-	5,65	911002	911009	911016	911050	911057	911064
8	0,75	90	18	8	6,2	-	7,65	911003	911010	911017	911051	911058	911065
8	1	90	18	8	6,2	-	7,55	911004	911011	911018	911052	911059	911066
10	1	90	15	10	8	-	9,55	911005	911012	911019	911053	911060	911067
10	1,25	100	20	10	8	-	9,40	911006	911013	910020	911054	911061	911068
DIN 374								ST	ST	ST	ST	ST	ST
12	1	100	22	9	7	-	11,55	911030	911036	911042	911078	911084	911090
12	1,25	100	22	9	7	-	11,40	911031	911037	911043	911079	911085	911091
12	1,5	100	22	9	7	-	11,30	911032	911038	911044	911080	911086	911092
14	1,25	100	22	11	9	-	13,45	911033	911039	911045	911081	911087	911093
14	1,5	100	22	11	9	-	13,30	911034	911040	911046	911082	911088	911094
16	1,5	100	22	12	9	-	15,30	911035	911041	911047	911083	911089	911095

Система обозначений	
Ød1, MF	тип резьбы
P	шаг резьбы, мм
L_{1}	общая длина, мм
L_{2}	длина режущей части, мм
d_{2}, h9	диаметр хвостовика, мм
$a, h 12$	сечение, мм
Z	кол-во зубьев
	диаметр отверстия под резьбу, мм

Глубина резьбы								3 xD	$3 \times \mathrm{D}$	$3 \times \mathrm{D}$	$3 \times \mathrm{D}$	3xD	$3 \times \mathrm{D}$
Материал								HSSP	HSSP	HSSP	HSSP	HSSP	HSSP
Класс точности								6HX	6HX	6HX	6GX	6GX	6GX
Покрытие								(BR)	V	(TiN)	(BR)	V	(TiN)
Группа обрабатываемых материалов								1.11 .21 .3	1.11 .2	1.11 .21 .31 .4	1.11 .21 .3	1.11 .2	1.11 .21 .31 .4
								4.14 .2	4.14 .2	2.12 .22 .3	4.14 .2	4.14 .2	2.12 .22 .3
									5.15 .2	4.14 .24 .3		5.15 .2	4.14 .24 .3
										5.15 .2			5.15 .2
$\begin{aligned} & \text { Ød1 } \\ & \mathbf{M F}^{\prime} \end{aligned}$	$\begin{gathered} \hline \mathrm{P} \\ \mathrm{TPI} \end{gathered}$	L_{1}	L_{2}	$\mathrm{d}_{2} \mathrm{~h} 9$	$\begin{gathered} a \\ \text { h } 12 \\ \hline \end{gathered}$	Z	[1]	Артикулы					
DIN 371								ST	ST	ST	ST	ST	ST
4	0.5	63	13	4,5	3,4	4	3,80	911096	911103	911110	911150	911157	911164
5	0.5	70	13	6	4,9	5	4,80	911097	911104	911111	911151	911158	911165
6	0,75	80	16	6	4,9	5	5,65	911098	911105	911112	911152	911159	911166
8	0,75	90	18	8	6,2	5	7,65	911099	911106	911113	911153	911160	911167
8	1	90	18	8	6,2	5	7,55	911100	911107	911114	911154	911161	911168
10	1	90	15	10	8	5	9,55	911101	911108	911115	911155	911162	911169
10	1,25	100	20	10	8	5	9,40	911102	911109	911116	911156	911163	911170
DIN 374								ST	ST	ST	ST	ST	ST
12	1	100	22	9	7	6	11,55	911126	911134	911142	911180	911188	911196
12	1,25	100	22	9	7	6	11,40	911127	911135	911143	911181	911189	911197
12	1,5	100	22	9	7	6	11,30	911128	911136	911144	911180	911190	911198
14	1,25	100	22	11	9	6	13,45	911129	911137	911145	911183	911191	911199
14	1,5	100	22	11	9	6	13,30	911130	911138	911146	911184	911192	911200
16	1,5	100	22	12	9	6	15,30	911131	911139	911147	911185	911193	911201
18	1,5	110	25	14	11	6	17,30	911132	911140	911148	911186	911194	911202
20	1,5	125	25	16	12	6	19,30	911133	911141	911149	911187	911195	911203

Система обозначений	
Ød1, GAS	тип резьбы
P	шаг резьбы, мм
L_{1}	общая длина, мм
L_{2}	длина режущей части, мм
d_{2}, h9	диаметр хвостовика, мм
$a, h 12$	сечение, мм
Z	кол-во зубьев
L	диаметр отверстия под резьбу, мм

Глубина резьбы									$3 \times \mathrm{D}$	$3 \times \mathrm{D}$	$3 \times \mathrm{D}$	$3 \times \mathrm{D}$
Материал									HSSP	HSSP	PM3	PM3
Класс точности									ISO 228X	ISO 228X	ISO 228X	ISO 228X
Покрытие									(BR)	TiN	(TiN-G)	(iN-G)
Группа обрабатываемых материалов									1.11 .21 .3	1.11 .21 .31 .4	1.11 .21 .31 .41 .5	1.11 .21 .31 .41 .5
									4.14 .2	2.12 .22 .3	2.12 .22 .32 .4	2.12 .22 .32 .4
										4.14 .24 .3	4.14 .24 .3	4.14 .24 .3
										5.15 .2	5.15 .27 .17 .2	5.15 .27 .17 .2
Ød1, GAS	$\begin{gathered} P \\ T P I \end{gathered}$	$\begin{gathered} \emptyset \\ \mathrm{MM} \end{gathered}$	L_{1}	L_{2}	$\mathrm{d}_{2} \mathrm{~h} 9$	$\begin{gathered} a \\ \mathrm{~h} 12 \end{gathered}$	Z	[18]	Артикулы			
DIN 5156									ST	ST	ST	ST
1/8	28	9,73	90	15	7	5,5	5	9,25	961000	961005	961010	961015
1/4	19	13,16	100	22	11	9	6	12,5	961001	961006	961011	961016
3/8	19	16,66	100	22	12	9	6	16	961002	961007	961012	961017
1/2	14	20,96	125	25	16	12	6	20	961003	961008	961013	961018
3/4	14	26,44	140	25	20	16	8	25,5	961004	961009	961014	961019

Система обозначений	
Ød1, UNF	тип резьбы
P	шаг резьбы, мм
L_{1}	общая длина, мм
L_{2}	длина режущей части, мм
d_{2}, h9	диаметр хвостовика, мм
$a, h 12$	сечение, мм
Z	кол-во зубьев
-2	диаметр отверстия под резьбу, мм

Глубина резьбы									3xD	3 xD	3xD	3 DD
Материал									HSSP	HSSP	HSSP	HSSP
Класс точности									2BX	2BX	2BX	2BX
Покрытие									(BR)	(TiN	(BR)	(TiN)
Группа обрабатываемых материалов									1.11 .21 .3	1.11 .21 .31 .4	1.11 .21 .3	1.11 .21 .31 .4
									4.14 .2	2.12 .22 .3	4.14 .2	2.12 .22 .3
										4.14 .24 .3		4.14 .24 .3
										5.15 .2		5.15 .2
$\emptyset \mathrm{d} 1$, UNF	$\begin{gathered} \hline P \\ T P I \end{gathered}$	$\begin{gathered} \varnothing \\ M M \end{gathered}$	L_{1}	L_{2}	$\mathrm{d}_{2} \mathrm{~h} 9$	$\begin{gathered} \mathrm{a} \\ \mathrm{~h} 12 \end{gathered}$	Z	[0]	Артикулы			
DIN 371									ST	ST	ST	ST
6	40	3,505	56	11	4	3	2	3,2	941000	941006	941012	941018
8	36	4,166	63	13	4,5	3,4	4	3,85	941001	941007	941013	941019
10	32	4,826	70	13	6	4,9	4	4,45	941002	941008	941014	941020
1/4	28	6,350	80	16	7	5,5	5	5,9	941003	941009	941015	941021
5/16	24	7,938	90	18	8	6,2	5	7,45	941004	941010	941016	941022
3/8	24	9,525	90	15	10	8	5	9	941005	941011	941017	941023
DIN 374									ST	ST	ST	ST
7/16	20	11,113	100	20	8	6,2	5	10,5	941024	941029	941034	941039
1/2	20	12,700	100	20	9	7	6	12,1	941025	941030	941035	941040
9/16	18	14,288	100	22	11	9	6	13,7	941026	941031	941036	941041
3/4	16	19,050	110	25	14	11	6	18,4	941027	941032	941037	941042
1 "	12	25,400	140	28	18	14,5	8	24,45	941028	941033	941038	941043

[^0]: * значение скорости для инструмента из твердого сплава

[^1]: Порядковый номер метчика по каталогу STAMO

